Designing, Building, and Deploying Dell Active Systems for Virtualization & Private Clouds

Daniel Sobczak

Dell Enterprise Forum Australia
Optimize your enterprise
Melbourne | 19 November 2013
Agenda

• Active System Overview
• Active System Design Points
• Active System Manager Overview
• Deploying and Expanding Active System 800 with Active System Manager
• Using Active System Manager to Deploy and Integrate Workloads
Active System Family Overview
Active Infrastructure Portfolio

Workload Optimization

- **Private Cloud**
 - Microsoft Private Cloud
 - VMware Private Cloud

- **VDI**
 - Citrix VDI, VMware VDI, Microsoft VDI

- **Enterprise Applications**
 - SAP, SQL, UC&C, SharePoint, Lync, HPC

Unified Management

Active System Manager 7.1

Automated workload delivery & end-to-end converged infrastructure management

Integrated, optimized systems

- **Active System 50**
 - Self-contained IT environments with simple application needs

- **Active System 200**
 - Intermediate IT environments with general application needs

- **Active System 800**
 - Scalable for large enterprise IT environments with sophisticated IT needs

- **Active System 1000**
 - Highly scalable for large enterprise IT environments with sophisticated IT needs

Customer Experience

Range of service and support choices including Pro-Support, Support Assist & Co-pilot

Available worldwide

Optimize your enterprise

Melbourne | 19 November 2013
Active System Design Points
Active System Design Principles

What are the key items designed into each Active System?

<table>
<thead>
<tr>
<th>Optimal Hardware and Software Configuration</th>
<th>Redundancy</th>
<th>Flexibility</th>
<th>Easy Deployment</th>
</tr>
</thead>
</table>
| • Based on Dell and industry best practices | • Minimize single points of failure
• Provide resiliency | • Multiple prepackaged options
• Selectable CPU, Memory and Storage options | • Available to be racked and cabled at a Dell Merge Center
• Bundled with Technical Services to configure and bring up at the customer site |
Active System Design Points and Features

Workloads

<table>
<thead>
<tr>
<th>Hypervisor</th>
<th>Server</th>
</tr>
</thead>
</table>
| • Local Storage (SD/HDD)
• HA, vMotion / Live Migration, DRS enablement
• Isolated Management Fabric | • Processor Model starting point
• Memory Sizing starting point
• NIC Sizing and Redundancy (teaming)
• Isolated vMotion / Live Migration Fabric |

Network

<table>
<thead>
<tr>
<th>Storage</th>
</tr>
</thead>
</table>
| • Converged Fabric
• Segregated iSCSI Fabric
• Segregated LAN Fabric
• ISL sizing for inter-array traffic | • Switch Redundancy
• Future Expansion Ports
• Network Segmentation
• Uplink to core
• Storage multi-pathing
• Storage load balancing
• Active connections sizing | • Switch Redundancy
• Future Expansion Ports
• Network Segmentation
• Uplink to core |

Storage

<table>
<thead>
<tr>
<th>Storage</th>
</tr>
</thead>
</table>
| • Storage multi-pathing
• Storage load balancing
• Active connections sizing | • Storage Tiering and load balancing ready
• Healthy Subscription ratio |

Management

<table>
<thead>
<tr>
<th>VM Provision/Manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x Many VM Mgmt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monitor/Manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>OOB Management</td>
</tr>
<tr>
<td>Hardware monitoring</td>
</tr>
<tr>
<td>Hardware inventory</td>
</tr>
<tr>
<td>Hardware management</td>
</tr>
<tr>
<td>Storage monitoring</td>
</tr>
<tr>
<td>Cloud Integration</td>
</tr>
<tr>
<td>Upgrade/Maintain Firmware updates</td>
</tr>
<tr>
<td>RepoUtil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance Monitor/Manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server performance</td>
</tr>
<tr>
<td>Storage performance</td>
</tr>
</tbody>
</table>

Optimize your enterprise
Melbourne | 19 November 2013

Optimal Hardware and Software Configuration

Redundancy

Flexibility

Easy Deployment
Active System 50
1 GbE non-converged LAN and iSCSI SAN

Hardware Components
- Servers - R620 & R420
- Networking – PowerConnect 7024
- Storage – PS6100
- Dell UPS 3750

Common Features
- Broadcom Quad Port 1GbE rNDC and PCIe Add-in Card
- Separate LAN and SAN fabrics
- Traffic distribution across ports and NICs

VMware ESXi Active System Features
- EqualLogic MEM for SAN multi-pathing redundancy and improved SAN utilization

Hyper-V Active System designs
- EqualLogic Host Integration Tools (HIT) + MPIO DSM for distributed SAN MPIO load.

Optimal Hardware and Software Configuration
- **Redundancy**
- **Flexibility**
- **Easy Deployment**
Active System 200 & 800
10 GbE based Converged LAN and iSCSI SAN

Hardware Components
- Servers – M620, R720, R620
- Networking – I/O Aggregator, S4810, S55
- Storage – PS6110, PS6510

Converged LAN & SAN
- Guaranteeing SAN traffic can flow
- How to allocate bandwidth
- Hardware and Software must support

Data Center Bridging
- Isolates LAN from SAN Traffic
 - Bandwidth allocation & flow control
- Supported End-to-End
- Managed centrally
 - Configured centrally & distributed via LLDP DCBx
 - Utilizes iSCSI TLV over DCBx

Optimal Hardware and Software Configuration
Redundancy
Flexibility
Easy Deployment
Active System 1000
10 GbE based LAN and 8 Gbps Fibre Channel SAN

Hardware Components
• Servers - M620, R620
• Network – I/O Aggregator/MXL, S4810/S5000
• Storage – SC8000, Dell 8|4 FC & Brocade 6510 FC Switch

Fibre Channel SAN
• NPIV support from Dell 8|4 module
• Native Host Multi-pathing & Single Initiator Zones

Compellent Storage Center
• Virtual Port mode for load balancing and WWN failover
• Fluid storage tiering between different storage enclosures
• Fibre Channel and iSCSI front-end ports

Other Highlights
• Hyper-V solution adds the iSCSI front end to Compellent to support in-guest clustering (< Storage Center 6.3)
Active System Virtual Switches

Hyper-V Virtual Switches
- Native Windows Server 2012 Load balance and Failover teaming
- Single function network adapters for simplified networking
- Bandwidth weighting applied to tune the virtual network adapters

VMware Virtual Switches
- Active/Active and Active/Passive port groups
- Bandwidth allocation and tuning provided via hardware partitioning
- vSwitches and port groups separated based on traffic

Optimal Hardware and Software Configuration
Redundancy
Flexibility
Easy Deployment
Active System Customer Network Integration

Active System 200/800/1000 options
- (4) x 40G LACP w/VLT (160G Total Active)
- (8) x 10G LACP w/VLT (80G Total Active)
- (4) x 40G LACP w/RSTP (80G Total Active)
- (8) x 10G LACP w/RSTP (40G Total Active)

Active System 50 options
- (4) x 10G LACP w/RSTP (20G Total Active)
- (8) x 1G LACP w/RSTP (4G Total Active)

Notes
- Layer 3 routing based in customer core, optionally in Active System switches
- Uplinks are 801.q trunks with Management, OOB and Workload VLANs

Optimal Hardware and Software Configuration

Redundancy

Flexibility

Easy Deployment

Optimize your enterprise
Melbourne | 19 November 2013
Active System Manager Overview
Active System Manager Overview

Automation
- Rapid infrastructure on-boarding
- Automated infrastructure configuration & lifecycle management

Centralization
- Robust, centralized management platform
- Self-service web portal

Operational Savings
- Manual step & touch point reduction
- Increased speed of delivery

Capital Savings
- Resource pooling
- Dynamic resource allocation

Accuracy
- Template-based provisioning & workflow orchestration
- Real-time & historical operations auditing

Adaptability
- Workload resource scaling
- Physical & virtual workload migration

Agility
- Accelerate IT service deployment

Efficiency
- Maximize efficiency across the IT services lifecycle

Quality
- Offer consistent IT service delivery

Active System Manager
Automated workload delivery and end-to-end converged infrastructure management

Optimize your enterprise
Melbourne | 19 November 2013
Deploying & Expanding Infrastructure with ASM
Deploying the Compute Cluster Nodes

Manual Configuration
• Configure each component independently
• Multiple touch points
• Repetitious & error prone

Automated Configuration with ASM
• Install ASM
• Discover hardware & prepare servers
• Customize template
• Go!

Servers

vCenter

Networking

Hypervisors

Storage
Preparing for Deployment

Identify Hardware
- Enter device IPs and credentials

Start discovery process

Enter Customer Settings
- Set key customer settings
- IP Addresses
- Passwords
- DNS Servers
Scheduling Deployment

Select the best practices based deployment template

Set additional customer settings
- Cluster size
- LUN settings
- Network VLANs

Schedule Deployment
Active System Manager Deployment Process

Available Hardware

- Select Blades
- Configure NPAR settings

Customer Settings

- Configure VLANs on IOAs
- Configure VLANs on Top of Rack Switches

Best Practices Based Template

Server
- LUN Creation
- CHAP Credential Creation

Network
- Deploy Hypervisors
- Configure Password
- Configure IPs (Mgmt, vMotion, iSCSI)
- Configure Port Groups (VLANs)
- Configure iSCSI Initiators
- Deploy Hypervisor
- Install/Configure EQL
- MEM module
- Syslog Settings

Storage
- Cluster Creation
- Datastore Creation

Hypervisor
- Best Practices Based Template
- Available Hardware
- Customer Settings
Successful Deployment

Each compute node is built out according to best practices.
Expanding the Active System 800

Challenge
- As business grows, more compute nodes are necessary.
- Must deploy additional nodes quickly, but consistency is critical.
- Expansion nodes must be configured similar to existing nodes.

Solution
- Add additional chassis and/or blades
 - Up to 2 chassis and 32 blades
- Cable according to Active System 800 Solution Guide
- Discovery and deploy!
Doing More with Active System
Rapid Expansion and Integration of Production Server

Challenge
- Need to deploy a new webserver.
- Must be integrated into the production web farm.
- Deployment must be able to be initiated by end-users.

Solution
- Utilize Active System Manager to orchestrate the deployment and integration of the new webserver.

Optimize your enterprise
Melbourne | 19 November 2013
Workload Provisioning Process

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE drl SYSTEM "http://activeSystemManager:40500/">

Workload Lifecycle
1. End-user request of workload
2. VMware cloning of workload
3. Workload integration with customer environment
4. Provision Complete - Workload in operation
5. Workload disintegration from customer environment & VM deleted

- Cloning
 - VMware-based provisioning
 - Leverages standard vCenter customizations

- Setup
 - Execute a local script to integrate workload with environment

- Production
 - Unregister webserver from load balancer
 - Workload is powered off and deleted

- Teardown

- Request
 - Web Portal
 - XML API

Optimize your enterprise
Melbourne | 19 November 2013
Summary

- Overview of the Active System Family
- Walk-thru of Engineering Design Points
- Technical walk-thru of key Active System components
- Connecting an Active System to the customer’s network
- Active System Manager Overview
- Using Active System Manager to deploy the compute cluster
- Using Active System Manager to expand your cluster
- Using Active System Manager to deploy workloads and orchestrate integrating into a customer environment
Copyright © 2013 by Dell, Inc.

No part of this document may be reproduced or transmitted in any form without the written permission from Dell, Inc.

This document could include technical inaccuracies or typographical errors. Dell may make improvements or changes in the product(s) or program(s) described herein at any time without notice. Any statements regarding Dell’s future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

References in this document to Dell products, programs, or services does not imply that Dell intends to make such products, programs or services available in all countries in which Dell operates or does business. Any reference to an Dell Program Product in this document is not intended to state or imply that only that program product may be used. Any functionality equivalent program, that does not infringe Dell’s intellectual property rights, may be used.

The information provided in this document is distributed “AS IS” without any warranty, either expressed or implied. Dell EXPRESSLY DISCLAIMS any warranties of merchantability, fitness for a particular purpose OR INFRINGEMENT. Dell shall have no responsibility to update this information.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any Dell patents or copyrights.

Dell, Inc.
300 Innovative Way
Nashua, NH 03063 USA